Topic:Delay Optimal Scheduling for Energy Harvesting Based Communications
Time:2015年4月23日(周四)上午10:30-12:00
Venue:信电大楼-215学术厅
Speaker:Huaiyu Dai, Associated Professor
Electrical and Computer Engineering
North Carolina State University ,USA
Biography
Huaiyu Dai (M’03, SM’09) received the B.E. and M.S. degrees in electrical engineering from Tsinghua University, Beijing, China, in 1996 and 1998, respectively, and the Ph.D. degree in electrical engineering from Princeton University, Princeton, NJ in 2002. He was with Bell Labs, Lucent Technologies, Holmdel, NJ, during summer 2000, and with AT&T Labs-Research, Middletown, NJ, during summer 2001. Currently he is an Associate Professor of Electrical and Computer Engineering at NC State University, Raleigh. His research interests are in the general areas of communication systems and networks, advanced signal processing for digital communications, and communication theory and information theory. His current research focuses on networked information processing and cross layer design in wireless networks, cognitive radio networks, wireless security, and associated information-theoretic and computation-theoretic analysis. He has served as an editor of IEEE Transactions on Communications, Signal Processing, and Wireless Communications. He co-edited two special issues of EURASIP journals on distributed signal processing techniques for wireless sensor networks, and on multiuser information theory and related applications, respectively. He co-chairs the Signal Processing for Communications Symposium of IEEE Globecom 2013, the Communications Theory Symposium of IEEE ICC 2014, and the Wireless Communications Symposium of IEEE Globecom 2014.
Abstract
Green communications attract increasing research interest recently. Equipped with a rechargeable battery, a source node can harvest energy from ambient environments and rely on this free and regenerative energy supply to transmit packets. Due to the uncertainty of available energy from harvesting, however, intolerably large latency and packet loss could be induced, if the source always waits for harvested energy. To overcome this problem, one Reliable Energy Source (RES) can be resorted to for a prompt delivery of backlogged packets. Naturally, there exists a tradeoff between the packet delivery delay and power consumption from the RES. In this paper, we address the delay optimal scheduling problem for a bursty communication link powered by a capacity-limited battery storing harvested energy together with one RES. The proposed scheduling scheme gives priority to the usage of harvested energy, and resorts to the RES when necessary based on the data and energy queueing processes, with an average power constraint from the RES. Through two-dimensional Markov chain modeling and linear programming formulation, we derive the optimal threshold-based scheduling policy together with the corresponding transmission parameters. Our study includes three exemplary cases that capture some important relations between the data packet arrival process and energy harvesting capability. Our theoretical analysis is corroborated by simulation results.